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A mathemat ica l  model has been created in [1] for heat  transfer 
processes with porous cooling, aLlowing for the temperature difference 
between the porous skeleton and the cooling agent.  In [2] an investi-  
gation was made of this temperature difference as a function of the 
porosity of the waLl, the internal heat  transfer coefficient, and the 
Peclet number of the coolant. According to [2],  the temperatures of 
the solid skeleton and of the coolant scarcely differ at any point of 
the body. A similar result was obtained in [3] .  Thus, the model  pos- 
tuiated in [4] is quite accurate.  Some stationary problems have been 
examined in [5-10]  on the basis of this model .  In a recently published 
paper [11], problems were solved for three different bodies: an infinite 
plate, a thin-walled cylindrical tube, and a hoLlow sphere. The pres- 
ent paper examines the same problems, but for a thick-waLled tube 
and sphere. 

The coolant, coming from a reservoir at temperature to, passes 
into the body through r = h (h = 0 for the plate), and leaves at r = R 
at a mass flow rate Gf, k g / m  z - r .  hr, which is constant with r ime 
( r  = 0, 1, and 2, respectively, for the plate, cylinder, and sphere). 
The amount of coolant passing per hour through the porous body has 
been referred for the cylinder to unit length of tubing, and for the 
p l a t e - t o  unit surface area. 

With the premises of reference [4] the temperature field is de- 
scribed by the equation 

d~t F dt q: 
~r ~-] r dr ieq =0.  (1) 

It is not difficult to show that the  amount of heat  absorbed by the 
coolant in unit t ime in unit voinme of the body 

Of c: dt 
q/ (2,': F) dr " (2) 

where for r = 0 (0)= 1. 
Following substitution of (2) into (1) in dimensionless form we ob- 

tain 

d~---~ + ~ -  - -T~-=  0 (3) 

The boundary condition on the internal surface when { = gl is 

d 0 (~1) g 
d ~ -- ~r 0 (~t). (4) 

We wilt consider that the heat  supplied to the hot surface is ex-  
pended not only in heating the body through conduction, but also in 
evaporation of the liquid. However, the heating is quite Powerful, 
and therefore evaporation of the coolant proceeds only on the surface 
of the porous body. 

For boundary conditions of the second kind, when g = 1, we obtain 

dO( l )  . ,. 
Ki = ~ q- gA. (5) 

For boundary conditions of the third kind, when ~ = 1 

d O ( l ) +  Bi l l - -O(1)  l = ' - - - ~  " gK. (6) 

The solutions of (3) are 

For F = 0 O = C1 exp (g ~) -J- C~, (7) 

For F = 1 O = C 1 ~g ~- C2, (6) 

For F = 2 O = Cx exp (--g/~) -~- C.,.. (9) 

If the constants Cz and Cz are determined from (4) and (5), we ob- 
tain a solution of the problem for boundary conditions of the second 
kind 

0 ~ Ki --gl( fF (~), (10) 
g 

where for the plate, tube, and hollow sphere jcF(g) 

fo(O=exp[--g(1--~)], f1(~)=~g, 

:~ ( 0  = e x p  [gU - -  I / D I .  ( n )  

For the hot surface of the wall g = i and fF(1) = 1. 
If the constants Ct and C e are determined from (4) and (6), we 

obtain a solution of the problem for boundary conditions of the third 
id.nd: 

0 -- I --g/Bi K 
I + g / B i  f r  (0. (12) 

tf the coolant is a gas, then K = O. Then (10) for the plate gives 
the stationary part of the solution [12], while (12) for the plate goes 
over into the well-known expression [8].  From analysis of the solution 
of (i0) and (12) the same conclusions follow which were drawn in [11]. 

NOTATION 

r is the space coordinate; R is the characteristic dimension of the 
body; g = z/R; t, t c and t o ate the temperatures of porous body, heat- 

ing medium, and coolant; O = (t- to)/($c- to); )~eq is the equivalent 
thermal conductivity of porous body; cf is the specific heat of the 

coolant; g ~- Gfcf Ri-r/(2r, F) leq; a is the heat transfer coefficient; 
Bi = aR/M p is the heat of vaporization;. K = p/cf (tc -- to); qc is the 
given heat flux; Ki = qcR/k(tc -- ts). 
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